
 LUG@GT
1

QEMU & KVM
Quick Emulator & Kernel-based Virtual Machine

Joseph Lennon
January 2018

LUG@GT2

Hypervisors

Arbitration layer between
hardware and guests.

Hypervisor variants:
● native (type 1)
● hosted (type 2)

LUG@GT3

Hypervisors: KVM

Included in the mainline Linux
kernel.

Leverages hardware
extensions for speedup of
virtual containers.

Guests interface directly with
KVM module, bypassing
“hosted” overhead.

LUG@GT4

IOMMU

Similar to traditional MMUs,
IOMMUs:

● Translate device address space
to physical address space 1

● Enforce memory access
permissions

PCI devices are divided into
IOMMU groups – devices
mapping to the same virtual
address space, and are thus
indistinguishable by the
IOMMU. 2

https://en.wikipedia.org/wiki/Graphics_address_remapping_table
https://vfio.blogspot.com/2014/08/iommu-groups-inside-and-out.html

LUG@GT5

Demo

Demo 1: General deployment and usage
● Install Libvirt and GUI management utilities
● Create and configure basic guest instance
● Deploy that guest instance

Demo 2: PCI device passthrough
● Enable IOMMU
● (Optional) Apply Access Control Services (ACS) patch
● Isolate PCI devices from host
● Install Libvirt and CLI management utilities
● Assign PCI device to guest and deploy

LUG@GT6

Demo 1: Libvirt

Libvirt provides a set of management tools for several
virtualization backends, including most notably
QEMU/KVM, Xen, LXC, and VirtualBox. 1

Although not required, Libvirt’s management utilities
make deploying and maintaining guests very
convenient.

If UEFI guest support is desired, EFI firmware may be
used from most distributions’ repositories (e.g. OVMF 2

3).

https://wiki.archlinux.org/index.php/Libvirt
https://github.com/tianocore/tianocore.github.io
https://www.kraxel.org/repos/jenkins/edk2/

LUG@GT7

Demo 2: System Requirements

The CPU, chipset, and BIOS/UEFI must support hardware
virtualization and IOMMU.

Ensure both capabilities are enabled in the BIOS/UEFI.

Intel AMD

H/W Virt. VT-x AMD-V

IOMMU VT-d AMD-Vi

LUG@GT8

Demo 2: Enable IOMMU

Verify IOMMU support is built into the kernel:

CONFIG_IOMMU_IOVA

CONFIG_INTEL_IOMMU OR CONFIG_AMD_IOMMU

Enable the driver by appending the relevant kernel argument:

intel_iommu=on OR amd_iommu=on

Verify IOMMU is correctly enabled:

dmesg | grep -E “DMAR|IOMMU”

LUG@GT9

Demo 2: Apply ACS Patch (Optional)

If a device to be passed through shares an IOMMU group with
a device not selected for passthrough, the two devices may be
discriminated after applying an Access Control Services (ACS)
override patch. 1 2

After patching and recompiling, append the following kernel
argument:

● Globally enable ACS for all PCI devices:

pci_acs_override=downstream

● Selectively enable ACS for a particular PCI device:

pci_acs_override=id:<VENDORID>:<PRODUCTID>

https://queuecumber.gitlab.io/linux-acs-override/
https://aur.archlinux.org/cgit/aur.git/plain/add-acs-overrides.patch?h=linux-vfio

LUG@GT10

Demo 2: Isolate PCI Devices

Devices selected for passthrough cannot be held by their
respective drivers and should instead be bound to Virtual
Function I/O (VFIO) at boot.

Verify VFIO support is built into the kernel:
● CONFIG_VFIO

● CONFIG_VFIO_PCI

● CONFIG_VFIO_IOMMU_TYPE1

● CONFIG_VFIO_VIRQFD

To bind the devices, provide a list of IDs to vfio-pci:

options vfio-pci ids=<VENDORID>:<PRODUCTID>,...

LUG@GT11

Demo 2: Isolate PCI Devices

If not compiled into the kernel, build the following modules into the
initramfs and rebuild:

● vfio

● vfio_pci

● vfio_iommu_type1

● vfio_virqfd

Verify vfio-pci controls the selected devices:

$ lspci -k -d <VENDORID>:<PRODUCTID>

It may be necessary to blacklist a driver to forcibly bind a device to vfio-pci.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

