
The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

QEMU internals

Chad D. Kersey

January 28, 2009

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Where to get the source

svn co svn://svn.savannah.nongnu.org/qemu

Make sure you have the latest sources if you’re reading along. A
lot has changed since the previous release.

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Functional simulation

Simulate what a processor does, not how it does it.

Needs separate model for timing analysis (if needed).

Faster than “cycle-accurate” simulators.

Good enough to use applications written for another CPU.

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

QEMU system simulation

QEMU simulates VGA, serial, and ethernet.

hw/* contain all of the supported boards.

Includes rather complete PC, Nokia N-series, PCI ultrasparc.

Various development boards in varying levels of completion.

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

What dynamic translation isn’t

Interpreters execute instructions one at a time.

Significant slowdown from constant overhead.

Easier to write and debug than dynamic translators.

Static Code

Data Flow
Control Flow

Guest Code

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

What dynamic translation is

Dynamic translators convert code as needed.

Try to spend most time executing in translation cache.

Translate basic blocks as needed.

Store translated blocks in code cache.

.

.

.
Static Code

Data Flow
Control Flow

Translation Cache

. . .

Generated CodeGuest Code

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Getting into and out of the code cache

cpu exec() called each time around main loop.

Program executes until an unchained block is encountered.

Returns to cpu exec() through epilogue.

Epilogue

Prologue
.
.
.

Pre−generated code Translation Cache

. . .

Code
cpu_exec()

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Portable dynamic translation

gen_intermediate_code()

Guest Code

TCG Operations

tcg_gen_code()

Host Code

QEMU uses an
intermediate form.

Frontends are in
target-*/

Backends are in tcg/*/

Selected with preprocessor
evil.

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Portable dynamic translation: stage 1

gen_intermediate_code()

Guest Code

TCG Operations

tcg_gen_code()

Host Code

mov %esp,%ebp
not %eax
add %eax,%edx
mov %edx,%eax
xor $0x55555555,%eax

push %ebp

ret
pop %ebp

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Portable dynamic translation: stage 2

gen_intermediate_code()

Guest Code

TCG Operations

tcg_gen_code()

Host Code

ld_i32 tmp2,env,$0x10
qemu_ld32u tmp0,tmp2,$0xffffffff
ld_i32 tmp4,env,$0x10
movi_i32 tmp14,$0x4
add_i32 tmp4,tmp4,tmp14
st_i32 tmp4,env,$0x10
st_i32 tmp0,env,$0x20
movi_i32 cc_op,$0x18
exit_tb $0x0

. . .

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Portable dynamic translation: stage 3

gen_intermediate_code()

Guest Code

TCG Operations

tcg_gen_code()

Host Code

mov 0x10(%ebp),%eax

mov 0x10(%ebp),%edx
mov (%ecx),%eax
mov %eax,%ecx

add $0x4,%edx
mov %edx,0x10(%ebp)
mov %eax,0x20(%ebp)
mov $0x18,%eax
mov %eax,0x30(%ebp)
xor %eax,%eax
jmp 0xba0db428

. . .

/*This represents just the
 ret instruction!*/

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Basic block chaining

Returning from code cache is slow.

Solution: jump directly between basic blocks!

Make space for a jump, follow by a return to the epilogue.

Every time a block returns, try to chain it.

Epilogue

Prologue

TB

TB

TB

TB

Pre−generated code Translation Cache

cpu_exec()

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Basic block chaining: step 1

Epilogue

Prologue
TB

Pre−generated code Translation Cache

TB TB

TB

cpu_exec()

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Basic block chaining: step 2

Epilogue

Prologue
TB

TB

Pre−generated code Translation Cache

TB

TB

cpu_exec()

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Basic block chaining: step 3

Epilogue

Prologue
TB

TB

TB

Pre−generated code Translation Cache

TBcpu_exec()

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Basic block chaining: step 4

Epilogue

Prologue
TB

TB

TB

Pre−generated code

cpu_exec()

Translation Cache

TB

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Basic block chaining: step 5

Epilogue

Prologue

TB

TB

TB

TB

Pre−generated code Translation Cache

cpu_exec()

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Unchain on interrupt

Now how do we interrupt the processor?

Have another thread unchain the blocks.

Epilogue

Prologue

TB

TB

TB

TB

Pre−generated code Translation Cache

cpu_exec()

cpu_interrupt()

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Code organization

TranslationBlock structure in translate-all.h

Translation cache is code gen buffer in exec.c

cpu-exec() in cpu-exec.c orchestrates translation and
block chaining.

target-*/translate.c: guest ISA specific code.

tcg-*/*/: host ISA specific code.

linux-user/*: Linux usermode specific code.

vl.c: Main loop for system emulation.

hw/*: Hardware, including video, audio, and boards.

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Ways to have fun

Add extra instructions to an ISA.

Generate execution traces to drive timing models.

Try to integrate timing models.

Retarget frontend or backend.

Improve optimization, say, by retaining chaining across
interrupts.

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Acknowledgments

QEMU by Fabrice Bellard: www.bellard.org/

Current qemu-internals:
http://bellard.org/qemu/qemu-tech.html

Some graphics in these slides part of work funded by DOE
grant.

Chad D. Kersey QEMU internals

The basics
Dynamic translation

Basic Block Chaining
The codebase

Acknowledgments
Questions

Questions?

?
Chad D. Kersey QEMU internals

	The basics
	Dynamic translation
	Basic Block Chaining
	The codebase
	Acknowledgments
	Questions

